;)
Hola Andres Palomino!
Hagamos las transformaciones necesarias para llegar a una expresión f(y/x):
$$\begin{align}&y^3+x^3 \frac{dy}{dx}=xy^2 \frac{dy}{dx}\\&\\&\frac{y^3}{xy^2}+\frac{x^3}{xy^2} \frac{dy}{dx}= \frac{dy}{dx}\\&\\&\frac y x + \frac{x^2}{y^2} \frac{dy}{dx}= \frac{dy}{dx}\\&\\&\frac y x=(1-\frac{x^2}{y^2}) \frac {dy}{dx}\\&u= \frac y x==>y=ux ==> \frac{dy}{dx}=\frac{du}{dx}x+u\\&\\& u=(1-\frac 1 {u^2})(\frac{du}{dx}x+u)\\& u=(\frac{u^2- 1} {u^2})(\frac{du}{dx}x+u)\\&\\&\frac{u^3}{u^2-1}-u= \frac{du}{dx} x\\&\\&\frac{u^3-u^3+u}{u^2-1}= \frac{du}{dx} x\\&\\&\frac{u}{u^2-1}= \frac{du}{dx} x\\&\\&\frac{dx} x= \frac{u^2-1} u du\\&\\&\int \frac{dx} x= \int \frac{u^2-1} u du\\&\\&\int \frac {dx} x=\int (u- \frac 1 u)du\\&\\&lnx= \frac{u^2} 2-lnu+C\\&\\&lnx= \frac{y^2}{2x^2}-ln \frac y x +C\\&\\&lnx+ln \frac y x=\frac{y^2}{2x^2}+C\\&\\&ln(x \frac y x)=\frac{y^2}{2x^2}+C\\&\\&ln y=\frac{y^2}{2x^2}+C\\&\\&y=e^{\frac{y^2}{2x^2}+C}=e^{\frac{y^2}{2x^2}}e^C\\&\\&y=ce^{\frac{y^2}{2x^2}}\\&\\&\\&\\&\end{align}$$
La A
Saludos
;)
;)