Analizar la convergencia de las siguientes sucesiones

Analice la convergencia de la siguientes sucesiones:

$$\begin{align}&b_{n}=\sqrt[n]{(\frac{3n^2+5}{3n^2-2})^{n^2+5}} \\&\\&c_{n}=(\frac{4n^3-6n^2}{4n^3-1})^{\frac{n^2+1}{n}}\end{align}$$

Los resultados deberian ser:

b) converge L=1

c) converge L=e^(-3/2)

Pero no logro llegar a ninguno de los dos resultados.

1

1 respuesta

Respuesta
1

·

·

¡Hola Maar!

$$\begin{align}&b_{n}=\sqrt[n]{\left(\frac{3n^2+5}{3n^2-2}\right)^{n^2+5}} =\\&\\&\left(\frac{3n^2+5}{3n^2-2}\right)^{\frac{n^2+5}{n}}=1^{\infty}\\&\\&\text{Es una indeterminación que se soluciona con}\\&\text{el número e}\\&\\&\frac{3n^2+5}{3n^2-2}=1+ \frac 7{3n^2-2}=1+ \frac{1}{\frac{3n^2-2}{7}}\\&\\&\lim_{n\to \infty}\left(1+ \frac{1}{\frac{3n^2-2}{7}}  \right)^{\frac{n^2+5}{n}}=\\&\\&\lim_{n\to \infty}\left(\left(1+ \frac{1}{\frac{3n^2-2}{7}}  \right)^{\frac{3n^2-2}{7}}\right)^{\frac 7{3n^2-2}· \frac {n^2+5}{n}}=\\&\\&\lim_{n\to \infty}e^{\frac{7n^2+35}{3n^3-2n}}=e^0=1\\&\\&\\&--------------------\\&\\&\\&c_{n}=\left(\frac{4n^3-6n^2}{4n^3-1}\right)^{\frac{n^2+1}{n}}=\left(1+\frac{-6n^2+1}{4n^3-1}  \right)^{\frac{n^2+1}{n}}=\\&\\&\left(1+\frac{1}{\frac{4n^3-1}{-6n^2+1}}  \right)^{\frac{n^2+1}{n}}=\left(\left(1+\frac{1}{\frac{4n^3-1}{-6n^2+1}}  \right)^{\frac{4n^3-1}{-6n^2+1}}\right)^{\frac{-6n^2+1}{4n^3-1}·\frac{n^2+1}{n}}=\\&\\&\left(\left(1+\frac{1}{\frac{4n^3-1}{-6n^2+1}}  \right)^{\frac{4n^3-1}{-6n^2+1}}\right)^\frac{{-6n^4+...}}{4n^4-n}\\&\\&\text{Y el límite cuando }n\to\infty \;es\\&\\&e^{-\frac 64}=e^{-\frac 32}\end{align}$$

Y eso es todo, no he puesto todos los detalles pero espero que tú los sepas hacer.

Saludos.

:

:

Añade tu respuesta

Haz clic para o

Más respuestas relacionadas