La fórmula de la curvatura es:
$$K=\frac{||\lambda'(t)\times\lambda''(t)||}{||\lambda(t)||^3}
\\
.
\\
\lambda(t) = (e^t,e^{-t},t)
\\
\lambda'(t) = (e^t,-e^{-t},1)
\\
\lambda''(t) = (e^t, e^{-t},0)
\\
.
\\
\begin{vmatrix}
i&j&k\\
e^t&-e^{-t}&1\\
e^t&e^{-t}&0
\end{vmatrix}=-e^{-t}\,i+e^t\;j+(e^0+e^0)k=
\\
·
\\
-e^{-t}\,i+e^t\,j+2k
\\
.
\\
||\lambda'(t)\times\lambda''(t)||=\sqrt{e^{-2t}+e^{2t}+4}
\\
.
\\
||\lambda'(t)||^3=\sqrt{(e^{2t}+e^{-2t}+1)^3}
\\
.
\\
K=\sqrt{\frac{e^{-2t}+e^{2t}+4}{(e^{2t}+e^{-2t}+1)^3}}
\\
.
\\
\text{y en el punto donde t=0}
\\
.
\\
K= \sqrt{\frac{1+1+4}{(1+1+1)^3}}=\sqrt{\frac{6}{27}}=\sqrt{\frac{2}{9}}=\frac{\sqrt 2}{3}$$
Y eso es todo.