Entonces supongo que querrán decir que el duelo es justo si la probabilidad de cada uno es el 50º
La probabilidad de que gane Garret es la probabilidad de acertar en su primer tiro, mas la de acertar en su segundo, el tercero, etc.
P(1) = 1/10
Para que pueda disparar el segundo tiro habrá sido necesario que él falle el primero y que Billy lo haya fallado también. Eso unido a que acierte el segundo nos da
P(2) = (9/10)(4/5)(1/10) = 36/500
Para que pueda disparar el tercero y acierte han tenido que fallar ambos los dos primeros
P(3) = (9/10)(4/5)(9/10)(4/5)(1/10) = 1296 / 25000
Y asi podríamos calcular sucesivamente y hacer la suma. Pero matemáticamente hay una forma exacta de calcular esa suma
Vemos que cada término es el anterior multiplicado por (9/10)(4/5)
Luego es una progresión geométrica de razón 36/50 = 18/25
Y supongo que lo habrás dado, o si no aquí tienes la fórmula de la suma infinita de una progresión geométrica:
Wikipedia, suma progresión infinita
$$\begin{align}&S_{\infty}= \frac{a_1}{1-r}= \frac{\frac {1}{10}}{1-\frac{18}{25}}=\\ &\\ &\frac{\frac{1}{10}}{\frac{25-18}{25}}= \frac{1}{10}\div \frac{7}{25}=\frac{25}{70}= \frac{5}{14}=0.35714...\end{align}$$
Luego la probabilidad de ganar Garret no llega a la mitad y el duelo no sería justo. Aunque también podría decirse que depende de sí mismo por ser el primero en disparar, pero eso ya son otro tipo de cuestiones.
Y eso es todo.