a) Es una función de distribución uniforme, el simple cálculo de la base de la figura de puntos válidos multiplicada por 2 nos da la probabilidad. La figura es el triángulo rectángulo con catetos en los ejes. Los vértices son (0,1), (0,0) y (1,0).
Si exigimos que entre lo menor de 3/4 lo que hacemos es quitar dos triangulitos rectángulos de 1/4 de base por 1/4 de altura. Su área total es
área = 2(1/2)(1/4)(1/4) = 1/16
Como la probabilidad es el doble del área es 2/16=1/8
Y esto era lo que sobraba, luego
P(Y1<=3/4, Y2<=3/4) = 1-1/8 = 7/8
b) Esta vez se quitan dos triángulos de base y altura 1/2
área de los dos=2(1/2)(1/2)(1/2) = 1/4
Se multiplica por 2 y queda 1/2
Se resta de 1 y
P(Y1<=1/2; Y2<=1/2) = 1/2
Y eso es todo.