División de Radicales de Distinto Índice

Respuesta de
a
Avatar
Usuario

Hola antes que nada Gracias por tomarte este tiempo para resolver dudas de muchos de nosotros

[math]?5m²n÷5vm³n²[/math]

 

en la formula el numero 5 después del signo ÷ es el indice del radical

bueno mi pregunta es como se resuelve esta división de radicales

Raíz cubica de 5m al cuadrado*n Entre raíz quinta de m cubica * n cuadrada

ojala me puedas ayudar con una explicación de esto

de antemano Gracias

Avatar
Experto

Hola JazyJrzMrls!

 

Antes de nada, para escribir una raíz cubica, cuarta o la que sea se procede así con el editor de ecuaciones

sqrt[n]{expresión}

Por ejemplo lo has escrito es

sqrt[3]{m^2n} \div sqrt[5]{m^3n^2}

[math]\sqrt[3]{m^2n} \div \sqrt[5]{m^3n^2}[/math]

 Depende lo que estés te lo pueden estar explicando de dos formas

Por el método de poner un radical común o por el método de poner los radicales como exponentes.  Veámoslos ambos:

 

Poniendo radical común tomaríamos el mínimo común múltiplo de los radicales, que en este caso sería 3·5 =15 y cada radicando se elevaría al mcm dividido entre el radical que tiene.

Asi el primero se elevaría a la 5 y el segundo al 3.  Al tener radical común se pueden juntar los radicandos bajo un mismo radical y operar entre ellos.

[math]\begin{align}&\sqrt[3]{m^2n} \div \sqrt[5]{m^3n^2}=\\ &\\ &\sqrt[15]{(m^2n)^5} \div \sqrt[15]{(m^3n^2)^3}=\\ &\\ &\sqrt[15]{m^{10}n^5 \div m^9n^6}=\\ &\\ &\sqrt[15]{m \div n}=\sqrt[15]{\frac mn}\\ &\\ &\\ &\text{En realidad se prefiere la barra horizontal o \ a }\div \end{align}[/math]

 

Poniendo los radicales cono expónentes sería así:

[math]\begin{align}&\sqrt[3]{m^2n} \div \sqrt[5]{m^3n^2}=\\ &\\ &\text {Usaré ya la preferencia de la barra sobre } \div \\ &\\ &\frac{(m^2n)^{\frac 13}}{(m^3n^2)^{\frac 15}}=\frac{m^{\frac 23}n^{\frac 13}}{m^{\frac 35}n^{\frac 25}}=\\ &\\ &\\ &\\ &m^{\left(\frac 23 - \frac 35 \right )}n^{ \left ( \frac 13 - \frac 25 \right ) }=m^{\left(\frac {10-9}{15} \right )}n^{ \left ( \frac {5-6}{15} \right ) }=\\ &\\ &\\ &m^{\left(\frac {1}{15} \right )}n^{ \left ( \frac {-1}{15} = \right ) }=\left(\frac mn \right)^{\frac{1}{15}}=\sqrt[15]{\frac mn}\\ &\\ &\\ &\end{align}[/math]

 

Y eso es todo, espero que te sirva y lo hayas entendido.  NO olvides puntuar.

 

Un saludo.

 

Avatar
Usuario

Muchas Gracias y Disculpa